Course Unit

Catalogue

Biomathematics

  • Unit Coordinator: Simone Fagioli
  • ECTS Credits: 6
  • Semester: 1
  • Year: 2
  • Campus: University of L'Aquila
  • Language: English
  • Aims:
    • To learn the basics in the mathematical modelling of population dynamics.
    • To provide a mathematical description of ODE models in population dynamics and the interpretation of the qualitative behaviour of the solutions
    • To get the basic notions in mathematical models in epidemiology and reaction kinetics.
    • To learn the mathematical modelling of population models in heterogeneous environment, described by partial differential equations.
    • To deal with advanced models in biology such as chemotaxis models and structured dynamics equations.
    • To get a sound background in reaction diffusion phenomena, Turing instability, and pattern formation.
  • Content:

    Continuous Population Models for Single Species. Continuous Growth Models. Delay models. Linear Analysis of Delay Population Models: Periodic Solutions.
    Continuous models for Interacting Populations. Predator-Prey Models: Lotka-Volterra Systems. Realistic Predator–Prey Models. Competition Models: Principle of Competitive Exclusion. Mutualism or Symbiosis Time-space dependent models: PDEs in biology. Diffusion equations. Diffusion and Random walk. The gaussian distribution. Smoothing and decay properties of the diffusion operator. Nonlinear diffusion- Reaction–diffusion models for one single species. Diffusive Malthus equation and critical patch size. Travelling waves. Fisher–Kolmogoroff equation.
    Reaction–diffusion systems. Multi species waves in Predator-Prey Systems. Turing instability and spatial patterns.
    Chemotaxis modelling. Diffusion vs. Chemotaxis: stability vs. instability. Diffusion vs. Chemotaxis: stability and blow–up. Chemotaxis with nonlinear diffusion. Models with maximal density
    Matematical models for tumor growth.
    Structured population dynamics. An example in ecology: competition for resources. Continuous traits. Evolutionary stable strategy in a continuous model.

  • Pre-requisites:

    Basic calculus and analysis (differential and integral calculus with functions of many variables).

    Ordinary differential equations.

    Basics in finite dimensional dynamical systems.

    Elementary methods for the solution of linear partial differential equations (separation of the variables).

  • Reading list:

    Murray - Mathematical Biology I&II

    Lecturers lecture notes

Tags

Related Articles

InterMaths Network
A network of +20 European and non-European Universities, coordinated by Department of Information Engineering, Computer Science and Mathematics (DISIM) at University of L'Aquila in Italy (UAQ)